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Genome-Wide Association Studies
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Which regions of the genome explain the phenotype?
Feature selection in high dimension.

» Technological advances:
p=10° - 10 Single Nucleotide Polymorphisms (SNPs)
n=10% - 10* samples.

» Methodological advances?



Missing heritability

GWAS fail to explain most of the inheritable variability of
complex traits.

Many possible reasons:
- non-genetic / non-SNP factors
- rare SNPs
- weak effect sizes
- few samples in-high dimension
- joint effets of multiple SNPs.



Multi-locus GWAS

» Epistasis: known synergetic effects between genes

» Enhance/suppress cancer mutations [Ashworth et al. 2011]
Loss of VHL (tumor supressor) causes cellular senescense, unless Retinoblastoma
(another tumor supressor) is also inactivated.

» Working memory related brain activation [Tan et al. 2007]
GRM3 adverse effect on prefrontal engagement only in presence of one variant of
COMT.

— Map pairs of SNPs to the phenotype.



102 - 10 SNP pairs -

Computational burden — use GrapHical Processing Units



EPIBLASTER

» Difference in correlation between SNPs:

> SNP{ISNPS) — Z SNP{VSNPS)

2 (SNP, SNP.)
i case "etrls Sl

ncases

» Limited to qualitative phenotypes.
T. Kam-Thong, D. Czamara, et al. (2011). EPIBLASTER - Fast exhaustive two-locus
epistasis detection strategy using graphical processing units. European Journal of
Human Genetics, 19 (4), 465-471 doi:10.1038/ejhg.2010.196

http://www.psych.mpg.de/2046236/EPIBLASTER. zip


http://www.psych.mpg.de/2046236/EPIBLASTER.zip

EpiGPUHSIC

» Extend to quantitative phenotypes using the Hilbert-Schmidt
Independence Criterion

A(sNp, 5NPy) = Z SNP'”/SNP.” Phenotype”

» Does not account for main effects.
T. Kam-Thong, B. Plitz, B. Miiller-Myhsok, and K. M. Borgwardt. (2011) Epistasis detection
on quantitative phenotypes by exhaustive enumeration using GPUs. Bioinformatics, 27

(13),i214-221 doi:10.1093/bioinformatics/btr218

http://www.psych.mpg.de/2046246/EpiGPUHSIC.zip


http://www.psych.mpg.de/2046246/EpiGPUHSIC.zip

GLIDE

GPU-based linear regression for the detection of epistasis

Phenotype = o SNP; + (3 SNP5 + -~y SNP; x SNPy + ¢

» |s ~y signficantly different from 07 — t-test.



Runtime Performance

Synthetic data: 1 000 subjects, 5 000 SNPs
NVIDIA GTX 580 (~ $450in 2011)
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» GWAS study: 567 genotyped subjects, about 10° SNPs




Hippocampus Volume Epistasis Detection

» Single-locus GWAS

- 20 SNPs with significant main effects
- 14 associated with hippocampal morphology and brain maturation
— explain 18% of the variance

» Two-locus GWAS

- Runtime = 3 days on a single GPU
- 20 pairs with lowest p-values (2.6 103 - 2.6 1)

- No significant main effects
— 8 independent pairs, explain 40% of the variance

» Together explain 50% of the variance.
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GLIDE

» Both phenotype and genotype can be continuous

» Main effects are accounted for.
T. Kam-Thong, C-A. Azencott, L. Cayton, B. Piitz, A. Altmann, N. Karbalai, P. G. Sdmann, B.
Scholkopf, B. Miiller-Myhsok, and K. M. Borgwardt. (2012) GLIDE: GPU-Based Linear
Regression for Detection of Epistasis. Human Heredity, 73 (4), 220-236 doi:
10.1159/000341885
https://github.com/BorgwardtLab/GLIDE

https://github.com/chagaz/glide-scripts
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https://github.com/BorgwardtLab/GLIDE
https://github.com/chagaz/glide-scripts

Missing heritability

GWAS fail to explain most of the inheritable variability of
complex traits.

Many possible reasons:
- non-genetic / non-SNP factors
— rare SNPs
- weak effect sizes
- few samples in high dimension (p~> n)
- joint effets'of multiple SNPs.
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Integrating prior knowledge

Use additional data and prior knowledge to constrain the
feature selection procedure.

- (Consistant with previously established knowledge
- More easily interpretable
- Statistical power.

Prior knowledge can be represented as structure:
- Linear structure of DNA

- Groups: e.g. pathways

- Networks (molecular, 3D structure).
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Network-quided multi-locus GWAS

Goal: Find a set of explanatory SNPs compatible with a given
network structure.
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Network-quided GWAS

» Additive test of association SKAT [Wu et al. 2011]
1€S
» Laplacian regularization
Q: 8 ) > Wi+alS|
€S j¢S
» Regularized maximization of R
arg max Zc, -7 |S] —A ZZVVW
ScV 1€S s 1€S y¢S
par5|ty N
association connect|VIty
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Minimum cut reformulation

The graph-regularized maximization of score ) () is equivalent to a s/t-min-cut for a
graph with adjacency matrix A and two additional nodes s and ¢, where A ;; = AW
for 1 <4,j < pand the weights of the edges adjacent to nodes s and ¢ are defined as

ASi:{ci—n ifc; >n and Ait:{n—q— ife; <n

0 otherwise 0 otherwise .

SConES: Selecting Connected Explanatory SNPs.
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Comparison partners

» Univariate linear regression Yk = ap + BGL

» Lasso

. 1 2
argmin L |ly - GBI+ n 13l
BERP N——

loss sparsity

» Feature selection with sparsity and connectivity constraints

argmin Ly, GS) + n [|Bll, + AQ(B)
BERP —_— Y— ~——

loss sparsity  connectivity
- nclasso: network connected Lasso [Li and Li, Bioinformatics 2008]

- Overlapping group Lasso [Jacob et al., ICML 2009]
- grouplLasso: E.g. SNPs near the same gene grouped together
- graphLasso: 1 edge = 1 group.
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CPU runtime [sec] (log-scale)

graphLasso
<«-< ncLasso
— ncLasso (accelerated) 1

+—+ SConES
) *—= linear regression
10 102 103 10* 10° 106

#SNPs (log-scale)

exponential random network (2 % density)
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Experiments: Performance on simulated data

v

Arabidopsis thaliana genotypes

n=500 samples, p=1 000 SNPs
TAIR Protein-Protein Interaction data ~ 50.10° edges

v

Higher power and lower FDR than comparison partners

except for groupLasso when groups = causal structure

v

Fairly robust to missing edges

Fails if network is random.
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17 flowering time phenotypes
[Atwell et al., Nature, 2010]

p ~ 170000 SNPs
(after MAF filtering)
n ~ 150 samples

165
[Sequra et al., Nat Genet 2012]

Correction for

- regress out PCs.
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10.1242/jcs.096941

Arabidopsis thaliana flowering time
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» SConkES selects about as many SNPs as other network-quided
approaches but detects more candidates.
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Arabidopsis thaliana flowering time

Predictivity of selected SNPs
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SConES: Selecting Connected Explanatory SNPs

» selects connected, explanatory SNPs;
» incorporates large networks into GWAS;
» is efficient, effective and robust.

C-A. Azencott, D. Grimm, M. Sugiyama, Y. Kawahara and K. Borgwardt (2013) Efficient
network-guided multi-locus association mapping with graph cuts, Bioinformatics 29
(13),i171-i179 doi:10.1093/bioinformatics/btt238

https://github.com/chagaz/scones
https://github.com/chagaz/sfan
https://github.com/dominikgrimm/easyGWASCore
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https://github.com/chagaz/scones
https://github.com/chagaz/sfan
https://github.com/dominikgrimm/easyGWASCore

Multi-trait GWAS

Increase sample size by jointly performing GWAS for multiple
related phenotypes

X n

Y21 >y = f(x. k)




Toxicogenetics / Pharmacogenomics

Tasks (phenotypes) = chemical compounds

Toxicogenetics Chemical
Challenge Data descriptors
10K attributes
Not Cytotoxicity
available data (EC,) -
Genotypes | RNASeq Training Set | 4 ?:h’
A
i =l ) s
= IS E
I 51 3]s
™ 106 chemicals € 5
lasi transcripts
Test Set
Mot Subchallenge 1 |-
ACTOET available

156 chemicals

F. Eduati, L. Mangravite, et al. (2015) Prediction of human population responses to toxic
compounds by a collaborative competition. Nature Biotechnology, 33 (9), 933-940 doi:
10.1038/nbt.3299



Multi-SConES

T related phenotypes.
» Goal: obtain similar sets of features on related tasks.

T
arg max Z Zci—n|8| —A szj—u|8t_1ASt|

S1,-,87CV ieS ies j¢s ok Sharing

SAS =(SuUS)H\(SNnS) (symmetric difference)
» (an be reduced to single-task by building a meta-network.

$ e
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Multi-SConES: Multiple related tasks
Simulations: retrieving causal features

Viodel 1
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Model 3 Single task Single task

M. Sugiyama, C-A. Azencott, D. Grimm, Y. Kawahara and K. Borgwardt (2014) Multi-task
feature selection on multiple networks via maximum flows, SIAM ICDM, 199-207
doi:10.1137/1.9781611973440.23

https://github.com/mahito-sugiyama/Multi-SConES
https://github.com/chagaz/sfan
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https://github.com/mahito-sugiyama/Multi-SConES
https://github.com/chagaz/sfan

SNP pathogenicity

» SNP deleteriousness prediction tools — prior knowledge?
» Tools are unreliable due to circularity issues in their
evaluation:

- Overlapping training and evaluation sets
- Gene-level confounding
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D. Grimm, C-A. Azencott etal (2015) The evaluation of tools used to predict the impact
of missense variants is hindered by two types of circularity. Human Mutation, 36 (5),
513 523 d0| 10 1002/humu 22768

Y A I T L Y . T T

i

o o o o o 5 o o
g & 8 &8 3 & 8 & 8

°
&

VaribenchSelected

28


https://github.com/dominikgrimm/pathogenicity

Limitations of current approaches

» Robustness/stability
Recovering the same SNPs when the data changes slightly.

» Complex epistasis patterns
- Limited to additive or quadrative effects

- Work on random forests + importance score [Yoshida, Stephan].

» Statistical significance

- Computing p-values
- Correcting for multiple hypotheses.
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O https://github.com/BorgwardtLab/
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Carl-Johann Simon-Gabriel, Oliver Stegle, Mahito Sugiyama, Valeri Velkov.

MPI for Intelligent Systems: Lawrence Cayton, Bernhard Scholkopf.
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MPI for Psychiatry: André Altmann, Tony Kam-Thong, Nazanin Karbalai,
Marcus Ising, Bertram Miiller-Myhsok, Benno Piitz.

Broad Institute: Verneri Anttila, Mark Daly, =Merci 2
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source: http: //www.flickr.com/photos/wuworks/
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